News


TANMS Doctoral Fellow, Alexandria Will-Cole, to Represent TANMS at the NSF ERC Perfect Pitch Competition

posted Sep 27, 2019, 2:25 PM by Tsai-Tsai O-Lee

36 postdocs and graduate students from across 6 TANMS institutions competed for the top spot at the 2019 TANMS Perfect Pitch Competition in September.  Most postdoctoral and graduate students are accustomed to presenting their research on a poster at conferences or symposiums; however, it requires a completely different set of skills to "pitch" their research in 90 seconds flat while succinctly addressing three key questions -- What is the real-life problem that their research addresses? How does their research solve the problem in an unique way? What is the impact on society and in achieving the Center's mission? 

Students affiliated with an NSF Engineering Research Center are given opportunities to develop their pitching skills biennially.  Each of the 19 ERCs across the nation hosts their local competitions and the winners represent their centers at the national competition that takes place at the NSF ERC Biennial Conference.  In 2017, TANMS alum, Stephen Sasaki took second place at the national competition.  This year, TANMS Doctoral Fellow, Alexandria Will-Cole of Professor Nian Sun's group at Northeastern University, will represent TANMS at the national competition in October.  

We had some great entries at the TANMS Perfect Pitch Competition and it was not an easy decision for the judges.  In second place is Armin Razavi, Ph.D. Candidate at UCLA and worthy of recognition are our Honorable Mention winners Victor Estrada, John Nance, and Shreya Patel.  

Congratulations to all our winners and we look forward to seeing Alexandria onstage at the NSF ERC Perfect Pitch Competition on October 25 in Washington D.C.!

   










TANMS 2019 Perfect Pitch Competition 1st Place Winner,
Alexandria Will-Cole, Northeastern University

TANMS Proudly Announces the Establishment of the New CLIMB Student Awards

posted Jul 24, 2019, 8:29 AM by Tsai-Tsai O-Lee   [ updated Jul 24, 2019, 9:24 AM ]



TANMS is honored and is proud to announce the establishment of the new Chen & Liang Inspiring Multiferroic Brilliance Awards.  The CLIMB awards were established through the initiative and generous contributions of TANMS Alumni, Cai Chen and Cheng-Yen Liang to recognize the accomplishments and potentials of talented TANMS undergraduate and graduate students committed to making a positive impact in the world through engineering research, scientific and technological advancement, leadership and education. 


CLIMB awards aim to inspire new discoveries in the field of nanoscale magnetism through the encouragement of TANMS Engineering Research Center students who demonstrate promise and exceptional commitment and achievement in the following areas:Research—application-driven and cutting-edge research within a TANMS partner institution and laboratory
  • Collaboration—cross-disciplinary cooperation with scientists and engineers
  • Innovation—contribution to investigations leading to the invention of new devices
  • Education—commitment to educational activities including mentoring and outreach in the community
For additional information, go to http://slc.tanms-erc.org/climb-award . 
 









TANMS Team Wins Poster Presentation Award at the National Emerging Researchers National Conference

posted Mar 1, 2019, 5:24 PM by Michelle Schwartz Servan   [ updated Mar 4, 2019, 2:52 PM ]

Congratulations to Nery Arevalos, Naim Wright and Connie Valles (pictured left to right) for being selected as the winners of the Research Experience and Mentoring (REM) Poster Presentations, at the 2019 Emerging Researchers National (ERN) Conference in Washington, DC. The three TANMS REM students completed the research project entitled, Growth and Characterization of Designer Magnetostrictive Thin Films for High Frequency Applications, in the laboratory of Professor Jane P. Chang with the guidance from graduate student mentor, and TANMS Fellow, Adrian 
Acosta.                                                                                                                                                                    
Joining the Chang Team at the 2019 ERN Conference were six additional particpants made up of 
community college and high school student from the REM 2018 program. Congratulations to all of the REM students for proudly representing TANMS!

TANMS Graduate Student Receives Best Student Presentation Award at 2019 Joint MMM-Intermag Conference

posted Feb 13, 2019, 8:45 AM by Michelle Schwartz Servan   [ updated Feb 13, 2019, 9:10 AM ]

Zhuyun (Maggie) Xiao of Professor Rob Candler’s research group was recently awarded the Best Student Presentation Award at the 2019 Joint MMM-Intermag Conference.  The conference includes a wide range of topic on magnetism and magnetic materials, and has historically drawn more than 1800 conference registrants, of which more than 500 are students.  The pool of student presenters was narrowed to five finalists, and from this group Maggie’s work on single domain magnetism for particle and cell manipulation was chosen for the Best Student Presentation Award.  Congratulations Maggie!


New Start-up Co-founded by TANMS Alum Joins TANMS IAB

posted Jan 18, 2019, 11:28 AM by Tsai-Tsai O-Lee   [ updated Jan 18, 2019, 11:29 AM ]

TANMS welcomes Sonera Magnetics Inc. as the newest member of our Industrial Advisory Board.  Co-founded by TANMS alumnus, Dr. Dominic Labanowski, former graduate student in the Salahuddin Group at UC Berkeley, Sonera Magnetics is developing a magnetometer that can operate at room temperature and in portable form factors with sensitivity comparable to the best magnetic sensors available today.  The core technology of Sonera Magnetics is a magnetic sensor based off of results from Dr. Labanowski's graduate studies at UC Berkeley on acoustically-driven ferromagnetic resonance.  This sensor leverages the strong interaction between GHz-frequency sound waves and magnetic thin films where the coupling enables a device with comparable performance to SQUID and SERF magnetometers, but has the capability to operate in ambient environmental conditions.  

Source: Cyclotron Road http://www.cyclotronroad.org/sonera (May 2018)

YouTube Video


TANMS Education Director Joins Advisory Committee for UNESCO Chair

posted Jan 18, 2019, 10:42 AM by Tsai-Tsai O-Lee   [ updated Jan 18, 2019, 12:43 PM ]

TANMS Education Director, Dr. Pilar O'Cadiz, has been selected to join the Advisory Committee for the United Nations Educational, Scientific and Cultural Organization (UNESCO) Chair in Global Learning and Global Citizenship Education.  Global Citizenship Education (GCE) is a strategic area of UNESCO’s Education Sector program that aims to instill in learners the values, attitudes and behaviors that support responsible global citizenship: creativity, innovation, and commitment to peace, human rights and sustainable development. The Advisory Committee serves the inaugural UNESCO Chair for GCE, UCLA Distinguished Professor of Education Carlos Alberto Torres, in "[promoting] an integrated system of research, training, information and documentation on global learning and global citizenship education and foster excellence and innovation in research and practice." (https://bostonglobalforum.org/2016/02/ucla-establishes-new-unesco-chair-in-global-learning-and-global-citizenship-education/

TANMS is honored to have Dr. O'Cadiz as part of our team.

Materials Research Bulletin Highlights Strain Mediated Magnetoelectric Work, "Turning Science Fiction Into Reality"

posted Nov 9, 2018, 8:45 AM by Michelle Schwartz Servan   [ updated Nov 9, 2018, 1:41 PM ]

The November 2018 issue of Materials Research Bulletin journal will feature five articles written by distinguished researchers, organized by Professor Gregory Carman and Professor Nian Sun. The articles discuss the control of magnetism and are designed to encourage more research on magnetoelectrics, highlighting the potential of this research to impact society by efficiently controlling magnetism in the small scale. 

The lead article, entitled Turning Science Fiction into  Reality Using Strain Mediated Magnetoelectrics, describes the motivation for focusing on this important area of research by providing background information, research opportunities and application descriptions in this arena. The article also highlights the scientific push the TANMS center has been making since its inception in 2012.

Advances from Salahuddin Group on Detecting Magnetic Fields with Diamond Dust Generates Buzz in the Research Community

posted Oct 17, 2018, 4:17 PM by Tsai-Tsai O-Lee   [ updated Oct 17, 2018, 4:19 PM ]

Image credit: https://www.chemicalnews.org/magnetic-field-detected-economically-by-diamond-dust/

Research led by Professor Sayeef Salahuddin's group at UC Berkeley is set to revolutionize science and industry with a magnetic sensor that reduces the energy required to power magnetic field detectors.  Their findings was recently published in Science Advances (Vol. 4, no. 9).  

Congratulations to the Salahuddin Group on this exciting breakthrough!



ABSTRACT
Magnetic sensing technology has found widespread application in a diverse set of industries including transportation, medicine, and resource exploration. These uses often require highly sensitive instruments to measure the extremely small magnetic fields involved, relying on difficult-to-integrate superconducting quantum interference devices and spin-exchange relaxation-free magnetometers. A potential alternative, nitrogen-vacancy (NV) centers in diamond, has shown great potential as a high-sensitivity and high-resolution magnetic sensor capable of operating in an unshielded, room-temperature environment. Transitioning NV center–based sensors into practical devices, however, is impeded by the need for high-power radio frequency (RF) excitation to manipulate them. We report an advance that combines two different physical phenomena to enable a highly efficient excitation of the NV centers: magnetoelastic drive of ferromagnetic resonance and NV-magnon coupling. Our work demonstrates a new pathway that combine acoustics and magnonics that enables highly energy-efficient and local excitation of NV centers without the need for any external RF excitation and, thus, could lead to completely integrated, on-chip, atomic sensors.

Full article: http://advances.sciencemag.org/content/4/9/eaat6574
Berkeley News: http://news.berkeley.edu/2018/09/10/diamond-dust-enables-low-cost-high-efficiency-magnetic-field-detection/

Research from TANMS 3D Team Featured on Advances in Engineering

posted Aug 30, 2018, 10:44 AM by Tsai-Tsai O-Lee   [ updated Aug 30, 2018, 10:44 AM ]

Research recently published by Dr. Roberto Lo Conte, postdoctoral researcher under Professor Jeffrey Bokor at the UC Berkeley Department of Electrical Engineering and Computer Science was featured online by Advances in Engineering (AIE).  The paper published in Nano Letters titled "Influence of Nonuniform Micron-Scale Strain Distributions on the Electrical Reorientation of Magnetic Microstructures in a Composite Multiferroic Heterostructure" was identified by AIE selection committee as a key scientific article contributing to excellence in science and engineering research.

The research by Dr. Lo Conte and the TANMS 3D Thrust demonstrated a systematic micron-scale study of the physical mechanisms which drive a PMN-PT/Ni multiferroic actuator.  Findings as such contribute to a promising path toward the development of ultralow power magnetoelectric devices.

Abstract
Composite multiferroic systems, consisting of a piezoelectric substrate coupled with a ferromagnetic thin film, are of great interest from a technological point of view because they offer a path toward the development of ultralow power magnetoelectric devices. The key aspect of those systems is the possibility to control magnetization via an electric field, relying on the magneto-elastic coupling at the interface between the piezoelectric and the ferromagnetic components. Accordingly, a direct measurement of both the electrically induced magnetic behavior and of the piezo-strain driving such behavior is crucial for better understanding and further developing these materials systems. In this work, we measure and characterize the micron-scale strain and magnetic response, as a function of an applied electric field, in a composite multiferroic system composed of 1 and 2 μm squares of Ni fabricated on a prepoled [Pb(Mg1/3Nb2/3)O3]0.69–[PbTiO3]0.31 (PMN–PT) single crystal substrate by X-ray microdiffraction and X-ray photoemission electron microscopy, respectively. These two complementary measurements of the same area on the sample indicate the presence of a nonuniform strain which strongly influences the reorientation of the magnetic state within identical Ni microstructures along the surface of the sample. Micromagnetic simulations confirm these experimental observations. This study emphasizes the critical importance of surface and interface engineering on the micron-scale in composite multiferroic structures and introduces a robust method to characterize future devices on these length scales.

About the Author
Dr. Roberto Lo Conte has been important member of the TANMS 3D Thrust.  His scientific interests focus on studying new magnetic materials systems useful for the development of energy efficient spintronic devices. He began is academic career in Italy, obtaining his bachelor degree and subsequently his master degree in Physics Engineering at the Politecnico di Milano, with a final project focused on the fabrication and characterization of a magneto-optic device for the development of a metallic spin-flip based laser. Such a project was carried out at the Royal Institute of Technology (KTH) in Stockholm, Sweden, where Dr. Lo Conte spent two years as a Double Degree student and obtained his Master of Science in Engineering degree. In 2012 he moved to Germany for his PhD in Applied Physics at the Johannes Gutenberg University of Mainz, where he graduated in 2015 with a thesis on “Magnetic nanostructures with structural inversion asymmetry”.

In 2016 he joined the University of California at Berkeley as a post-doctoral researcher in the Electrical Engineering and Computer Science department, where he investigated multiferroic heterostructures with the intent of developing new magnetoelectric technologies for energy efficient applications.

Today Dr Lo Conte is a Marie Curie Fellow at the University of Hamburg in Germany and a post-doctoral research associate at the University of California at Berkeley, in the Materials Science and Engineering department, studying magnetic multilayers hosting topologically non-trivial spin states.

SOURCES:
Advances in Engineering: https://advanceseng.com/strain-distributions-magnetoelectric-multiferroic-devices-revealed/
Nano Letters: https://pubs.acs.org/doi/abs/10.1021/acs.nanolett.7b05342

TANMS Graduate Student Awarded the 2018-19 ALS Doctoral Fellowship in Residence

posted Jul 31, 2018, 5:42 PM by Michelle Schwartz Servan   [ updated Jul 31, 2018, 6:14 PM by Tsai-Tsai O-Lee ]

TANMS graduate student, Zhuyun "Maggie" Xiao, has been named a recipient of the highly coveted Advanced Light Source (ALS) Doctoral Fellowship in Residence for 2018-19. This internationally recognized fellowship is awarded to only 8-10 students each year. During her fellowship year, Maggie will be working at the ALS, a division of Lawrence Berkeley National Laboratory (LBNL). LBNL is a national user facility that generates intense x-ray radiation for scientific and technological research. Students acquire hands-on scientific training and develop professional maturity to complement their doctoral research. Maggie will be hosted by Dr. Elke Arenholz, Senior Scientist and Deputy of Photon Science Operations and will continue to work on TANMS-related research. 

Maggie is a Ph.D. student under TANMS 3D Thrust Leader and Associate Professor Robert N. Candler in the UCLA Department of Electrical and Computer Engineering. She holds a bachelors of science in Physics from Bryn Mawr College and was recently recognized with the 2017-2018 Distinguished Master's Thesis Award from UCLA Department of Electrical and Computer Engineering.  Her thesis titled "Controlling Magnetization and Strain at the Micron-Scale and Below in Strain-Mediated Composite Multiferroic Devices" focuses on the goal of realizing electrically-controlled, miniaturized magnetoelectric composite devices that are energy-efficient, and compact, for applications such as localized particle and cell manipulation and cell therapy.  Maggie is a valued member of the TANMS 3D Thrust.  

1-10 of 70